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Overview 
This document describes the functionality of a toolkit that can be used in conjunction with 

many new and existing voting systems to enable both end-to-end (E2E) verifiability and privacy-

enhanced risk-limiting audits (RLAs).  The process involves a set of election trustees (often 

represented by canvassing board members) who generate keys in advance of each election and 

then use their keys after the conclusion of voting to decrypt election artifacts to enable public 

verification of the election tallies. 

A device that collects votes (e.g., a ballot-marking device or optical scanner) calls the toolkit 

with the contents of each vote it receives.  The toolkit uses the trustee public key(s) to encrypt 

each ballot, stores the encrypted ballot for later publication as part of a public record, and 

returns to the device a unique tracking code to be given to the voter (the tracking code is not 

used if only RLAs are performed). 

At the conclusion of an election, each voting device uploads all of the encrypted ballots it has 

collected together with non-interactive zero-knowledge proofs that each item is an encryption 

of a legitimate ballot.  These encrypted ballots are then homomorphically combined to form an 

aggregate encrypted ballot containing the election tallies.  Election trustees then apply their 

keys to decrypt the tallies and provide a proof that the tallies are correct. 

Observers can use this open specification and/or accompanying materials to write election 

verifiers that can confirm the well-formedness of each encrypted ballot, the correct aggregation 

of these ballots, and the accurate decryption of election tallies. 

The details of the ElectionGuard Application Programming Interface (API) are included in a 

separate document.  The principal purposes of this document are to specify the functionality of 

the ElectionGuard toolkit and to provide details necessary for independent parties to write 

election verifiers that consume the artifacts produced by the toolkit. 

ElectionGuard Structure 
This document describes the four principal components of ElectionGuard. 

1. Baseline Parameters – These are general parameters that are standard in every election.  

An alternate means for generating parameters is described, but the burden of verifying 



an election is increased if alternate parameters are used because a verifier would need 

to verify the proper construction of any alternate parameters. 

2. Key Generation – Prior to each individual election, trustees must generate individual 

public-private key pairs and exchange shares of private keys to enable completion of an 

election even if some trustees become unavailable.  Although it is preferred to generate 

new keys for each election, it is permissible to use the same keys for multiple elections 

so long as the set of trustees remains the same.  A complete new set of keys must be 

generated if even a single trustee is replaced. 

3. Ballot Encryption – While encrypting the contents of a ballot is a relatively simple 

operation, most of the work of ElectionGuard is the process of creating externally-

verifiable artifacts to prove that each encrypted ballot is well-formed (i.e., its decryption 

is a legitimate ballot without overvotes or improper values). 

4. Verifiable Decryption – At the conclusion of each election, trustees use their private 

keys to produce election tallies together with verifiable artifacts that prove that the 

tallies are correct. 

Notation 

In the remainder of this specification, the following notation will be used. 

• ℤ = {… , −3, −2, −1, 0, 1, 2, 3, … } is the set of integers. 

• ℤ𝑝 = {0, 1, 2, … , 𝑝 − 1} is the additive group of the integers modulo 𝑝. 

• ℤ𝑝
∗  is the multiplicative subgroup of ℤ𝑝.  When 𝑝 is a prime, ℤ𝑝

∗ = {1, 2, 3, … , 𝑝 − 1}. 

• ℤ𝑝
𝑟  is the set of 𝑟th-residues in ℤ𝑝

∗ .  Formally, ℤ𝑝
𝑟 = {𝑦 ∈ ℤ𝑝

∗  for which ∃𝑥 ∈ ℤ𝑝
∗  such that 

𝑦 = 𝑥𝑟mod 𝑝}.  When 𝑝 is a prime for which 𝑝 − 1 = 𝑞𝑟 with 𝑞 a prime that is not a 

divisor of integer 𝑟, then ℤ𝑝
𝑟  is an order 𝑞 cyclic subgroup of ℤ𝑝

∗  and for each 𝑦 ∈ ℤ𝑝
∗ , 𝑦 ∈

ℤ𝑝
𝑟  if and only if 𝑦𝑞  mod 𝑝 = 1. 

Encryption 

Encryption in ElectionGuard is performed using an exponential form of the ElGamal 

cryptosystem.1  Primes 𝑝 and 𝑞 are publicly fixed such that 𝑞 is not a divisor of 𝑟 =
𝑝−1

𝑟
.  A 

generator 𝑔 of the order 𝑞 subgroup ℤ𝑝
𝑟  is also fixed.  (Any 𝑔 = 𝑥𝑟  mod 𝑝 for which 𝑥 ∈ ℤ𝑝

∗  

suffices so long as 𝑔 ≠ 1.) 

A public-private key pair can be chosen by selecting a random 𝑠 ∈ ℤ𝑞 as a private key and 

publishing 𝐾 = 𝑔𝑠 mod 𝑝 as a public key. 

 
1 ElGamal T. (1985) A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. 

In: Blakley G.R., Chaum D. (eds) Advances in Cryptology. CRYPTO 1984. Lecture Notes in Computer 
Science, vol 196. Springer, Berlin, Heidelberg. https://link.springer.com/content/pdf/10.1007/3-540-39568-

7_2.pdf 

https://link.springer.com/content/pdf/10.1007/3-540-39568-7_2.pdf
https://link.springer.com/content/pdf/10.1007/3-540-39568-7_2.pdf


A message 𝑀 ∈ ℤ𝑝
𝑟  is then encrypted by selecting a random nonce 𝑅 ∈ ℤ𝑞 and forming the pair 

(𝛼, 𝛽) = (𝑔𝑅 mod 𝑝, 𝑔𝑀 ⋅ 𝐾𝑅 mod 𝑝).  An encryption (𝛼, 𝛽) can be decrypted by the holder of 

the secret 𝑠 as 

𝛽

𝛼𝑠
 mod 𝑝 =

𝑔𝑀 ⋅ 𝐾𝑅

(𝑔𝑅)𝑠
 mod 𝑝 =

𝑔𝑀 ⋅ (𝑔𝑠)𝑅

(𝑔𝑅)𝑠
 mod 𝑝 =

𝑔𝑀 ⋅ 𝑔𝑅𝑠

𝑔𝑅𝑠
 mod 𝑝 = 𝑔𝑀 mod 𝑝. 

The value of 𝑀 can be computed from 𝑔𝑀 mod 𝑝 as long as the message 𝑀 is limited to a small, 

known set of options. 

Only two possible messages are encrypted in this way by ElectionGuard.  An encryption of zero 

is used to indicate that an option is not selected, and an encryption of one is used to indicate 

that an option is selected.  

Homomorphic Properties 

A fundamental quality of the exponential form of ElGamal described above is its additively 

homomorphic property.  If two messages 𝑉1 and 𝑉2 are respectively encrypted as (𝛼1, 𝛽1) =

(𝑔𝑅1 mod 𝑝, 𝑔𝑉1 ⋅ 𝐾𝑅1 mod 𝑝) and (𝛼2, 𝛽2) = (𝑔𝑅2 mod 𝑝, 𝑔𝑉2 ⋅ 𝐾𝑅2 mod 𝑝), then the 

component-wise product (𝛼, 𝛽) = (𝛼1𝛼2 mod 𝑝, 𝛽1𝛽2 mod 𝑝) = (𝑔𝑅1+𝑅2 mod 𝑝, 𝑔𝑉1+𝑉2 ⋅

𝐾𝑅1+𝑅2 mod 𝑝) is an encryption of the sum 𝑉1 + 𝑉2.  (There is an implicit assumption here that 

(𝑉1 + 𝑉2) < 𝑞 which is easily satisfied when 𝑉1 and 𝑉2 are both small.  If (𝑅1 + 𝑅2) ≥ 𝑞, 

(𝑅1 + 𝑅2) mod 𝑞 may be substituted without changing the equation since 𝑔𝑞 mod 𝑝 = 1.) 

This additively homomorphic property is used in two important ways in ElectionGuard.  First, all 

of the encryptions of a single option across ballots can be multiplied to form an encryption of 

the sum of the individual values.  Since the individual values are one on ballots that select that 

option and zero otherwise, the sum is the tally of votes for that option and the product of the 

individual encryptions is an encryption of the tally. 

The other use is to sum all of the selections made in a single contest on a single ballot.  After 

demonstrating that each option is an encryption of either zero or one, the product of the 

encryptions indicates the number of options that are encryptions of one, and this can be used 

to show that no more ones than permitted are among the encrypted options – i.e., that more 

options were selected than permitted. 

However, as will be described below, it is possible for a holder of a nonce 𝑅 to prove to a third 

party that a pair (𝛼, 𝛽) is an encryption of 𝑀 without revealing the nonce 𝑅 and without access 

to the secret 𝑠. 

Non-Interactive Zero-Knowledge (NIZK) Proofs 

ElectionGuard provides numerous proofs about encryption keys, encrypted ballots, and 

election tallies using the following four techniques. 



1. A Schnorr proof2 allows the holder of an ElGamal secret key 𝑠 to interactively prove 

possession of 𝑠 without revealing 𝑠. 

2. A Chaum-Pedersen proof3 allows an ElGamal encryption to be interactively proven to 

decrypt to a particular value without revealing the nonce used for encryption or the 

secret decryption key 𝑠.  (This proof can be constructed with access to either the nonce 

used for encryption or the secret decryption key.) 

3. The Cramer-Damgård-Schoenmakers technique4 enables a disjunction to be 

interactively proven without revealing which disjunct is true. 

4. The Fiat-Shamir heuristic5 allows interactive proofs to be converted into non-interactive 

proofs. 

Using a combination of the above techniques, it is possible for ElectionGuard to 

demonstrate that keys are properly chosen, that ballots are properly formed, and that 

decryptions match claimed values. 

Baseline Parameters 
Integer ElGamal encryption is used with a prime modulus (𝑝) chosen such that 𝑝 − 1 = 𝑞𝑟 

where 𝑞 is a moderately-sized prime that is not a divisor of 𝑟.  Because data confidentiality 

should be long-lived, the ElectionGuard default will use a 4096-bit prime 𝑝 and a 256-bit prime 

𝑞.  A generator (𝑔) of the order 𝑞 multiplicative subgroup of ℤ𝑝
∗  is also provided along with 𝑔̅ =

𝑔−1 mod 𝑝.  The principal reason for selecting integer ElGamal over elliptic curve ElGamal is the 

desire to make construction of election verifiers as simple as possible without requiring special 

tools or dependencies. 

Standard parameters for ElectionGuard begin with the largest 256-bit prime 𝑞 = 2256 − 189.  

The hexadecimal representation of 𝑞 is as follows. 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFF43 

 
2 Schnorr C.P. (1990) Efficient Identification and Signatures for Smart Cards. In: Brassard G. (eds) 

Advances in Cryptology — CRYPTO’ 89 Proceedings. CRYPTO 1989. Lecture Notes in Computer Science, 

vol 435. Springer, New York, NY. https://link.springer.com/content/pdf/10.1007%2F0-387-34805-0_22.pdf 
3 Chaum D., Pedersen T.P. (1993) Wallet Databases with Observers. In: Brickell E.F. (eds) Advances in 

Cryptology — CRYPTO’ 92. CRYPTO 1992. Lecture Notes in Computer Science, vol 740. Springer, Berlin, 

Heidelberg. https://link.springer.com/content/pdf/10.1007%2F3-540-48071-4_7.pdf 
4 Cramer R., Damgård I., Schoenmakers B. (1994) Proofs of Partial Knowledge and Simplified Design of 

Witness Hiding Protocols. In: Desmedt Y.G. (eds) Advances in Cryptology — CRYPTO ’94. CRYPTO 1994. 

Lecture Notes in Computer Science, vol 839. Springer, Berlin, Heidelberg. 
https://link.springer.com/content/pdf/10.1007%2F3-540-48658-5_19.pdf 
5 Fiat A., Shamir A. (1987) How To Prove Yourself: Practical Solutions to Identification and Signature 

Problems. In: Odlyzko A.M. (eds) Advances in Cryptology — CRYPTO’ 86. CRYPTO 1986. Lecture Notes in 
Computer Science, vol 263. Springer, Berlin, Heidelberg. 
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf 

https://link.springer.com/content/pdf/10.1007%2F0-387-34805-0_22.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-48071-4_7.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-48658-5_19.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf


The modulus 𝑝 is then set to be the largest 4096-bit prime which is one greater than a multiple 

of 𝑞.  This works out to 𝑝 = 24096 − 69𝑞 − 2650872664557734482243044168410288960. 

The hexadecimal representation of 𝑝 is as follows. 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFBA 

  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FE0175E3 0B1B0E79 1DB50299 4F24DFB1 

 

The value of the cofactor 𝑟 is then set to 𝑟 =
𝑝−1

𝑞
, and 𝑔 = 2𝑟  mod 𝑝 is used as the generator of 

the order 𝑞 multiplicative subgroup of ℤ𝑝
∗ .  The hexadecimal representation of 𝑔 is as follows. 

  9B61C275 E06F3E38 372F9A9A DE0CDC4C 82F4CE53 37B3EF0E D28BEDBC 01342EB8 

  9977C811 6D741270 D45B0EBE 12D96C5A EE997FEF DEA18569 018AFE12 84E702BB 

  9B8C78E0 3E697F37 8D25BCBC B94FEFD1 2B7F9704 7F634232 68881C3B 96B389E1 

  34CB3162 CB73ED80 52F7946C 7E72907F D8B96862 D443B5C2 6F7B0E3F DC9F035C 

  BF0F5AAB 670B7901 1A8BCDEB CF421CC9 CBBE12C7 88E50328 041EB59D 81079497 

  B667B960 49DA04C7 9D60F527 B1C02F7E CBA66849 179CB5CF BE7C990C D888B69C 

  44171E4F 54C21A8C FE9D821F 195F7553 B73A7057 07263EAE A3B7AFA7 DED79ACF 

  5A64F3BF B939B815 C52085F4 0714F4C6 460B0B0C 3598E317 46A06C2A 3457676C 

  B345C8A3 90EBB942 8CEECEFA 6FCB1C27 A9E527A6 C55B8D6B 2B1868D6 EC719E18 



  9A799605 C540F864 1F135D5D C7FB62D5 8E0DE0B6 AE3AB90E 91FB9965 05D7D928 

  3DA833FF 0CB6CC8C A7BAFA0E 90BB1ADB 81545A80 1F0016DC 7088A4DF 2CFB7D6D 

  D876A2A5 807BDAA4 000DAFA2 DFB6FBB0 ED9D7755 89156DDB FC24FF22 03FFF9C5 

  CF7C85C6 8F66DE94 C98331F5 0FEF59CF 8E7CE9D9 5FA008F7 C1672D26 9C163751 

  012826C4 C8F5B5F4 C11EDB62 550F3CF9 3D86F3CC 6E22B0E7 69AC6591 57F40383 

  B5DF9DB9 F8414F6C B5FA7D17 BDDD3BC9 0DC7BDC3 9BAF3BE6 02A99E2A 37CE3A5C 

  098A8C1E FD3CD28A 6B79306C A2C20C55 174218A3 935F697E 813628D2 D861BE54 

The inverse generator 𝑔̅ =
1

𝑔
 mod 𝑝 has the following hexadecimal representation. 

  7C3760F7 C5286704 4BCDE2D4 759615F1 69B873FC B465D96D BE3CBFA5 8AA5EA94 

  31FE08F7 AAC4F859 8C240BE6 194B03E3 7F8A9DC7 8A255A82 BCE95959 FF52A6DE 

  66CF240A 50EDB093 4A987FD9 DA4AFD73 A38011BD 08F4AE43 573BDD50 FA6F70EE 

  EA067D6E 57D446DE 9351BEE5 0E6AD9A5 B9282967 F1CDA890 A21C79C4 3C398755 

  9F415CCC 4E9E71C2 E0D7E4AA 95C23510 891F0C98 0D2F67DD 14EF589A 356D9FE7 

  79AD2288 5923FAAC 1D334EDC D64D1541 66446A96 879EEB61 D92ADB68 F7BFA1BA 

  F7F66B05 7409A10A 08297B79 31CDB706 21571E31 43335ED7 BF130C08 18A8F99D 

  60E71645 D399B793 11A28B7D 10D7F1D4 0918A836 1B937929 FB0E9B46 3F90E494 

  4E37EDBE 60F5F0BD 21F4737D D526B4FF 7EFE36EE 5C8A0456 3B8F04CF 8E7A29EE 

  9742DA6E 27B7442C 5E9BD207 3F6274ED FDD8CBEF 916F6433 19D8A385 D5D52587 

  25FC3FA8 ECCFE897 72C85A84 79754B8A 53A7F19E EB64A1BE 23A767D2 898F9152 

  91D680BC 8778462E 2A6490EC E23A5C99 F96F1677 3018050C 24D00A1C 720B05AC 

  6B74BDE8 1FDAF645 433A227E 75D13073 00DB62FA 259B711D 077923C1 23624482 

  C6CEEF6A 925FABA1 8E44A5C0 C02DF980 220B517B C210655A FD9A7C16 2A3FCFCE 

  FC12E7C9 1D625397 366B3570 596316E1 6DD24A1E 1DC330C0 F051A9C4 2E528E56 

  39750808 BEC8614C CA123F27 A76F043A 2FD7864E C61C4F66 3F896543 4A73E978 

  



Alternative parameter sets are possible.  A good source for parameter generation is appendix A 

of FIPS 186-46.   However, allowing alternate parameters would force election verifiers to 

recognize and check that parameters are correctly generated.  Since these checks would be 

very different from other checks that are required of a verifier, allowing alternate parameters 

would add substantial complexity to election verifiers.  For this reason, this version of 

ElectionGuard fixes the parameters as above.  

An ElectionGuard version 1 election verifier may assume that the baseline parameters match 

the parameters provided above.  However, it is recommended that the above parameters be 

checked against the parameters of each election to accommodate the possibility of different 

parameters in future versions of ElectionGuard.7 

Key Generation 
Before an election, the number of trustees (𝑛) is fixed together with a threshold value (𝑘) that 

describes the number of trustees necessary to decrypt tallies and election verification.  The 

values 𝑛 and 𝑘 are integers subject to the constraint that 1 ≤ 𝑘 ≤ 𝑛.  Canvassing board 

members can often serve the role of election trustees, and typical values for 𝑛 and 𝑘 could be 5 

and 3 – indicating that 3 of 5 canvassing board members must cooperate to produce the 

artifacts that enable election verification.  The reason for not setting 𝑘 too low is that it will also 

be possible for 𝑘 trustees to decrypt individual ballots. 

Note that decryption of individual ballots does not directly compromise voter privacy since links 

between encrypted ballots and the voters who cast them are not retained by the system.  

However, voters receive tracking codes that can be associated with individual encrypted 

ballots, so any group that has the ability to decrypt individual ballots can also coerce voters by 

demanding to see their tracking codes. 

Threshold ElGamal encryption is used for encryption of ballots.  This form of encryption makes 

it very easy to combine individual trustee public keys into a single public key for encrypting 

ballots.  It also offers a homomorphic property that allows individual encrypted votes to be 

combined to form encrypted tallies. 

The trustees of an election will each generate a public-private key pair.  The public keys will 

then be combined (as described in the following section) into a single election public key which 

is used to encrypt all selections made by voters in the election. 

 
6 NIST (2013) Digital Signature Standard (DSS). In: FIPS 186-4. 
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 
7 If alternative parameters are allowed, election verifiers must confirm that 𝑝, 𝑞, 𝑟, 𝑔, and 𝑔̅ are such that both 𝑝 
and 𝑞 are prime (this may be done probabilistically using the Miller-Rabin algorithm), that 𝑝 − 1 = 𝑞𝑟 is satisfied, 
that 𝑞 is not a divisor of 𝑟, and 1 < 𝑔 < 𝑝, that 𝑔𝑞 mod 𝑝 = 1, that 𝑔𝑔̅  mod 𝑝 = 1, and that generation of the 
parameters is consistent with the cited standard. 

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


Ideally, at the conclusion of the election, each trustee will use its private key to form a verifiable 

partial decryption of each tally.  These partial decryptions will then be combined to form full 

verifiable decryptions of the election tallies. 

To accommodate the possibility that one or more of the trustees will not be available at the 

conclusion of the election to form their partial decryptions, the trustees will cryptographically 

share8 their private keys amongst each other during key generation in a manner to be detailed 

in the next section.  A pre-determined threshold value (𝑘) out of the (𝑛) trustees will be 

necessary to produce a full decryption. 

Another parameter of an election should be a public ballot coding file.  This file should list all of 

the contests in an election, the number of selections allowed for each contest, and the options 

for each contest together with associations between each option and its representation on a 

virtual ballot.  It is assumed that each contest in the ballot coding file has a unique label and 

that within each contest, each option also has a unique label.  For instance, if Alice, Bob, and 

Carol are running for governor, and David and Ellen are running for senator, the ballot coding 

file could enable the vector 〈0,1,0; 0,1〉 to be recognized as a ballot with votes for Bob as 

governor and Ellen as senator.  The detailed format of a ballot coding file will not be specified in 

this document.  But the contents of this file are hashed together with the prime modulus (𝑝), 

subgroup order (𝑞), generator (𝑔), number of trustees (𝑛), decryption threshold value (𝑘), date, 

and jurisdictional information to form a base hash code (𝑄) which will be incorporated into 

every subsequent hash computation in the election. 

Overview of key generation 

The 𝑛 trustees of an election are denoted by 𝑇1, 𝑇2, … , 𝑇𝑛.  Each trustee 𝑇𝑖 generates an 

independent ElGamal public-private key pair by generating a random integer secret 𝑠𝑖 ∈ ℤ𝑞 and 

forming the public key 𝐾𝑖 = 𝑔𝑠𝑖  mod 𝑝.  Each of these public keys will be published in the 

election record together with a non-interactive zero-knowledge Schnorr proof of knowledge of 

possession of the associated private key.   

The joint election public key will be 

𝐾 = ∏ 𝐾𝑖

𝑛

𝑖=1

 mod 𝑝. 

To enable robustness and allow for the possibility of missing trustees at the conclusion of an 

election, the ElectionGuard key generation includes a sharing of private keys between trustees 

to enable decryption by any 𝑘 trustees.  This sharing is verifiable, so that receiving trustees can 

confirm that the shares they receive are meaningful; and the process allows for decryption 

without explicitly reconstructing private keys of missing trustees. 

 
8 Shamir A.  How to Share a Secret.  (1979) Communications of the ACM. 



Each trustee 𝑇𝑖 generates 𝑘 − 1 random polynomial coefficients 𝑎𝑖,𝑗 such that 0 < 𝑗 < 𝑘 and 

0 ≤ 𝑎𝑖,𝑗 < 𝑞 and forms the polynomial 

𝑃𝑖(𝑥) = ∑ 𝑎𝑖,𝑗𝑥𝑗

𝑘−1

𝑗=0

mod 𝑞 

by setting 𝑎𝑖,0 equal to its secret value 𝑠𝑖.  Trustee 𝑇𝑖 then publishes commitments 𝐾𝑖,𝑗 =

𝑔𝑎𝑖,𝑗  mod 𝑝 to each of its random polynomial coefficients.  As with the primary secret keys, 

each trustee should provide a Schnorr proof of knowledge of the secret coefficient value 𝑎𝑖𝑗, 

associated with each published commitment 𝐾𝑖,𝑗.  Since polynomial coefficients will be 

generated and managed in precisely the same fashion as secret keys, they will be treated 

together in a single step below. 

At the conclusion of the election, individual encrypted ballots will be homomorphically 

combined into a single encrypted aggregate ballot – consisting of an encryption of the tally for 

each option offered to voters.  Each trustee will use its secret key to generate a partial 

decryption of each encrypted tally value, and these partial decryptions will be combined into 

full decryptions.  If any election trustees are missing during tallying, any set of 𝑘 trustees who 

are available can cooperate to reconstruct the missing partial decryption. 

All spoiled ballots are individually decrypted in precisely the same fashion. 

Details of key generation 

Each trustee 𝑇𝑖 in an election with a decryption threshold of 𝑘 generates 𝑘 polynomial 

coefficients 𝑎𝑖,𝑗 such that 0 ≤ 𝑗 < 𝑘 and 0 ≤ 𝑎𝑖,𝑗 < 𝑞 and forms the polynomial 

𝑃𝑖(𝑥) = ∑ 𝑎𝑖,𝑗𝑥𝑗

𝑘−1

𝑗=0

mod 𝑞. 

Trustee 𝑇𝑖 then publishes commitments 𝐾𝑖,𝑗 = 𝑔𝑎𝑖,𝑗  mod 𝑝 for each of its random polynomial 

coefficients.  The constant term 𝑎𝑖,0 of this polynomial will serve as the private key for trustee 

𝑇𝑖, and for convenience we denote 𝑠𝑖 = 𝑎𝑖,0, and its commitment 𝐾𝑖,0 will serve as the public 

key for trustee 𝑇𝑖 and will also be denoted as 𝐾𝑖 = 𝐾𝑖,0. 

In order to prove possession of the coefficient associated with each public commitment, for 

each 𝐾𝑖,𝑗 with 0 ≤ 𝑗 < 𝑘, trustee 𝑇𝑖 generates a Schnorr proof of knowledge for each of its 

coefficients as follows. 

This Non-Interactive Zero-Knowledge (NIZK) proof proceeds as follows. 

NIZK Proof by Trustee 𝑇𝑖 of its knowledge of secrets 𝑎𝑖,𝑗 such that 𝐾𝑖,𝑗 = 𝑔𝑎𝑖,𝑗  mod 𝑝 

Trustee 𝑇𝑖 generates random integer values 𝑅𝑖,𝑗 in the range 0 ≤ 𝑅𝑖,𝑗 < 𝑞 and computes ℎ𝑖,𝑗 =

𝑔𝑅𝑖,𝑗  mod 𝑝 for each 0 ≤ 𝑗 < 𝑘.  Using the hash function SHA-256 (as defined in NIST PUB FIPS 



180-49), trustee 𝑇𝑖 then performs a single hash computation 𝑐𝑖 =

𝐻(𝑄, 𝐾𝑖,0, 𝐾𝑖,1, 𝐾𝑖,2, … , 𝐾𝑖,𝑘−1, ℎ𝑖,0, ℎ𝑖,1, ℎ𝑖,2, … ℎ𝑖,𝑘−1) mod 𝑞 and publishes the values 𝐾𝑖,𝑗, ℎ𝑖,𝑗, 

𝑐𝑖, and 𝑢𝑖,𝑗 = (𝑅𝑖,𝑗 + 𝑐𝑖𝑎𝑖,𝑗) mod 𝑞. 

An election verifier should confirm both the hash computation of 𝑐𝑖 and each of the 

𝑔𝑢𝑖,𝑗  mod 𝑝 = ℎ𝑖,𝑗𝐾𝑖,𝑗
𝑐𝑖  mod 𝑝 equations. 

It is worth noting here that for any fixed constant 𝛼, the value 𝑔𝑃𝑖(𝛼) mod 𝑝 can be computed 

entirely from the published commitments as 

𝑔𝑃𝑖(𝛼) = 𝑔∑ 𝑎𝑖,𝑗
𝑘−1
𝑗=0 𝛼𝑗

 mod 𝑝 = ∏ 𝑔𝑎𝑖,𝑗𝛼𝑗

𝑘−1

𝑗=0

 mod 𝑝 = ∏(𝑔𝑎𝑖,𝑗)𝛼𝑗

𝑘−1

𝑗=0

 mod 𝑝 = ∏ 𝐾𝑖,𝑗
𝛼𝑗

𝑘−1

𝑗=0

 mod 𝑝. 

Although this formula includes double exponentiation – raising a given value to the power 𝛼𝑗 –

in what follows, 𝛼 and 𝑗 will always be small values (bounded by 𝑛). 

To share secret values amongst each other, it is assumed that each trustee 𝑇𝑖 has previously 

shared a public encryption function 𝐸𝑖 with the group.10  Each trustee 𝑇𝑖 then publishes the 

encryption 𝐸ℓ (𝑅𝑖,ℓ, 𝑃𝑖(ℓ)) for every other trustee 𝑇ℓ – where 𝑅𝑖,ℓ is a random nonce. 

Trustee 𝑇ℓ can now decrypt each 𝑃𝑖(ℓ) encrypted to its public key and verify its validity against 

the commitments made by 𝑇𝑖 to its coefficients 𝐾𝑖,0, 𝐾𝑖,1, … , 𝐾𝑖,𝑘−1 by confirming that the 

following equation holds: 

𝑔𝑃𝑖(ℓ) mod 𝑝 = ∏(𝐾𝑖,𝑗)
ℓ𝑗

𝑘−1

𝑗=0

mod 𝑝. 

Trustees then publicly report having confirmed or failed to confirm this computation.  If the 

recipient trustee 𝑇ℓ reports not receiving a suitable value 𝑃𝑖(ℓ), it becomes incumbent on the 

sending trustee 𝑇𝑖 to publish this 𝑃𝑖(ℓ) together with the nonce 𝑅𝑖,ℓ it used to encrypt 𝑃𝑖(ℓ) 

under the public key 𝐸ℓ of recipient trustee 𝑇ℓ.  If trustee 𝑇𝑖 fails to produce a suitable 𝑃𝑖(ℓ) and 

nonce 𝑅𝑖,ℓ that match both the published encryption and the above equation, it should be 

excluded from the election and the key generation process should be restarted with an 

alternate trustee.  If, however, the published 𝑃𝑖(ℓ) and 𝑅𝑖,ℓ satisfy both the published 

encryption and the equation above, the receiving trustee 𝑇ℓ should be excluded from the 

election and the key generation process should be restarted with an alternate trustee. 

 
9 NIST (2015) Secure Hash Standard (SHS). In: FIPS 180-4. https://csrc.nist.gov/publications/detail/fips/180/4/final 
10 A “traditional” ElGamal public key is fine for this purpose.  But the baseline ElectionGuard parameters 𝑝 and 𝑞 
are tuned for homomorphic purposes and are not well-suited for encrypting large values.  The ElectionGuard 
trustee keys can be used by breaking a message into small pieces (e.g. individual bytes) and encrypting a large 
value as a sequence of small values.  However, traditional public-key encryption methods are more efficient. 

https://csrc.nist.gov/publications/detail/fips/180/4/final


Once the baseline parameters have been produced and confirmed, all of the public 

commitments 𝐾𝑖,𝑗 are hashed together with the base hash 𝑄 to form an extended base hash 𝑄̅ 

that will form the basis of subsequent hash computations.  The hash function SHA-256 will be 

used here and for all hash computations for the remainder of this document. 

Ballot Encryption 
An ElectionGuard ballot is comprised entirely of encryptions of one (indicating selection made) 

and zero (indicating selection not made).  To enable homomorphic addition (for tallying), these 

values are exponentiated during encryption.  Specifically, to encrypt a ballot entry (𝑉), a 

random value 𝑅 is selected such that 0 ≤ 𝑅 < 𝑞, and the following computation is performed. 

• Zero (not selected) is encrypted as (𝑔𝑅 mod 𝑝, 𝐾𝑅 mod 𝑝).   

• One (selected) is encrypted as (𝑔𝑅 mod 𝑝, 𝑔 ⋅ 𝐾𝑅 mod 𝑝). 

Note that if multiple encrypted votes (𝑔𝑅𝑖  mod 𝑝, 𝑔𝑉𝑖 ⋅ 𝐾𝑅𝑖  mod 𝑝) are formed, their 

component-wise product (𝑔∑ 𝑅𝑖𝑖  mod 𝑝, 𝑔∑ 𝑉𝑖𝑖 ⋅ 𝐾∑ 𝑅𝑖𝑖  mod 𝑝) serves as an encryption of ∑ 𝑉𝑖𝑖  – 

which is the tally of those votes.11     

A contest in an election consists of a set of options together with a selection limit that indicates 

the number of selections that are allowed to be made in that contest.  In most elections, most 

contests have a selection limit of one.  However, a larger selection limit (e.g., select up to three) 

is not uncommon in some elections.  Approval voting can be achieved by setting the selection 

limit to the total number of options in a contest. Ranked choice voting is not supported in this 

version of ElectionGuard.12  Also, write-ins are assumed to be explicitly registered or allowed to 

be lumped into a single “write-ins” category for the purpose of verifiable tallying.  Verifiable 

tallying of free-form write-ins may be best done with a MixNet13 design. 

A legitimate vote in a contest consists of a set of selections with cardinality not exceeding the 

selection limit of that contest.  To accommodate legitimate undervotes, the internal 

representation of a contest is augmented with “dummy” options equal in number to the 

selection limit.  Dummy options are selected as necessary to force the total number of 

selections made in a contest to be equal to the selection limit.  When the selection limit is one, 

for example, the single dummy option can be thought of as a “none of the above” option.  With 

larger selection limits, the number of dummy options selected corresponds to the number of 

additional options that a voter could have selected in a contest. 

 
11 The initial decryption actually forms the value 𝑔∑ 𝑉𝑖𝑖  mod 𝑝.  However, since ∑ 𝑉𝑖𝑖  is a relatively small value, it 

can be effectively computed from 𝑔∑ 𝑉𝑖𝑖  mod 𝑝 by means of an exhaustive search or similar methods. 
12 Benaloh J., Moran. T, Naish L., Ramchen K., and Teague V.  Shuffle-Sum:  Coercion-Resistant Verifiable Tallying 
for STV Voting  (2009) in Transactions of Information Forensics and Security. 
13 Chaum D.  Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms (1981) Communications of 
the ACM. 



For efficiency, the dummy options could be eliminated in an approval vote.  However, to 

simplify the construction of election verifiers, we presume that dummy options are always 

present – even for approval votes. 

Two things must now be proven about the encryption of each vote. 

1. The encryption associated with each option is either an encryption of zero or an 

encryption of one. 

2. The sum of all encrypted values in a contest is equal to the selection limit for that 

contest (usually one). 

The use of ElGamal encryption enables efficient zero-knowledge proofs of these requirements, 

and the Fiat-Shamir heuristic can be used to make these proofs non-interactive.  Chaum-

Pedersen proofs are used to demonstrate that an encryption is that of a specified value, and 

these are combined with the Cramer-Damgård-Schoenmakers technique to show that an 

encryption is that of one of a specified set of values – particularly that a value is an encryption 

of either zero or one.  The set of encryptions of selections in a contest are homomorphically 

combined, and the result is shown to be an encryption of that contest’s selection limit – again 

using a Chaum-Pedersen proof. 

Note that the decryption of the selection limit could be more efficiently demonstrated by just 

releasing the sum of the nonces used for each of the individual encryptions.  But, again to 

simplify the construction of election verifiers, a Chaum-Pedersen proof is used here as well. 

The “random” nonces used for the ElGamal encryption of the ballot nonces are derived from a 

single 256-bit master nonce 𝑅𝐵 for each ballot.  For each contest listed in the ballot coding file, 

a contest nonce 𝑅𝐶  is derived from the master nonce (𝑅𝐵) and the contest label (𝐿𝐶) as 𝑅𝐶 =

𝐻(𝐿𝐶 , 𝑅𝐵) using the hash function SHA-256.  For each option listed in the ballot coding file, the 

nonce used to encrypt that option is derived from the contest nonce (𝑅𝐶) and the selection 

label for that option (𝐿𝑆) as 𝑅 = 𝐻(𝐿𝑆, 𝑅𝐶). 

A user of ElectionGuard may optionally provide an additional public key.  If such a key is 

provided, ElectionGuard uses that key to encrypt each ballot’s master nonce 𝑅𝐵 and return this 

encryption together with the encrypted ballot. 

Ballot nonces may be independent across different ballots, and only the nonces used to encrypt 

ballot selections need to be derived from the master nonce.  The use of a single master nonce 

for each ballot allows the entire ballot encryption to be re-derived from the contents of a ballot 

and the master nonce.  It also allows the encrypted ballot to be fully decrypted with the single 

master nonce. 

Outline for proofs of ballot correctness   

To prove that an ElGamal encryption pair (𝛼, 𝛽) is an encryption of zero, the Chaum-Pedersen 

protocol proceeds as follows. 



NIZK Proof that (𝛼, 𝛽) is an encryption of zero (given knowledge of encryption nonce 𝑅) 

The prover selects a random value 𝑢 in the range 0 ≤ 𝑢 < 𝑞 and commits to the pair (𝑎, 𝑏) =

(𝑔𝑢 mod 𝑝, 𝐾𝑢 mod 𝑝).  A hash computation is then performed (using the Fiat-Shamir 

heuristic) to create a pseudo-random challenge value 𝑐 = 𝐻(𝑄̅, (𝛼, 𝛽), (𝑎, 𝑏)), and the prover 

responds with 𝑣 = (𝑢 + 𝑐𝑅) mod 𝑞.  A verifier can now confirm the claim by checking that both 

𝑔𝑣 mod 𝑝 = 𝑎 ⋅ 𝛼𝑐 mod 𝑝 and 𝐾𝑣 mod 𝑝 = 𝑏 ⋅ 𝛽𝑐 mod 𝑝 are true. 

NIZK Proof that (𝛼, 𝛽) is an encryption of one (given knowledge of encryption nonce 𝑅) 

To prove that (𝛼, 𝛽) is an encryption of one, 
𝛽

𝑔
 mod 𝑝 is substituted for 𝛽 in the above.  The 

verifier can be relieved of the need to perform a modular division by computing 𝛽𝑔̅ mod 𝑝 

rather than 
𝛽

𝑔
 mod 𝑝.  As an alternative, the verifier can confirm that 𝑔𝑐 ⋅ 𝐾𝑣 mod 𝑝 = 𝑏 ⋅

𝛽𝑐 mod 𝑝 instead of 𝐾𝑣 mod 𝑝 = 𝑏 ⋅ (
𝛽

𝑔
)

𝑐

 mod 𝑝. 

As with many zero-knowledge protocols, if the prover knows a challenge value prior to making 

its commitment, it can create a false proof.  For example, if a challenge 𝑐 is known to be 

forthcoming, a prover can generate a random 𝑣 in the range 0 ≤ 𝑣 < 𝑞 and commit to (𝑎, 𝑏) =

(
𝑔𝑣

𝛼𝑐  mod 𝑝,
𝐾𝑣

𝛽𝑐  mod 𝑝) = (𝑔𝑣𝛼𝑞−𝑐 mod 𝑝, 𝐾𝑣𝛽𝑞−𝑐 mod 𝑝).  This selection will satisfy the 

required checks for (𝛼, 𝛽) to appear as an encryption of zero regardless of the values of (𝛼, 𝛽).  

Similarly, setting (𝑎, 𝑏) = (
𝑔𝑣

𝛼𝑐  mod 𝑝,
𝐾𝑣𝑔𝑐

𝛽𝑐  mod 𝑝) = (𝑔𝑣𝛼𝑞−𝑐 mod 𝑝, 𝐾𝑣𝑔𝑐𝛽𝑞−𝑐 mod 𝑝) will 

satisfy the required checks for (𝛼, 𝛽) to appear as an encryption of one regardless of the values 

of (𝛼, 𝛽).  This quirk is what enables the Cramer-Damgård-Schoenmakers technique to prove a 

disjunction of two predicates. 

Sketch of NIZK Proof that (𝛼, 𝛽) is an encryption of zero or one 

After the prover makes commitments (𝑎0, 𝑏0) and (𝑎1, 𝑏1) to the respective assertions that 

(𝛼, 𝛽) is an encryption of zero and (𝛼, 𝛽) is an encryption of one, a single challenge value 𝑐 is 

selected by hashing all commitments and baseline parameters.  The prover must then provide 

challenge values 𝑐0 and 𝑐1 such that 𝑐 = 𝑐0 + 𝑐1 mod 𝑞.  Since the prover has complete 

freedom to choose one of 𝑐0 and 𝑐1, the prover can fix one value in advance – either 𝑐0 if (𝛼, 𝛽) 

is actually an encryption of one or 𝑐1 if (𝛼, 𝛽) is actually an encryption of zero.  In response to 

the resulting challenge 𝑐, the prover uses this freedom to answer its faux claim with its chosen 

challenge value and then uses the remaining challenge value (as forced by the constraint that 

𝑐 = 𝑐0 + 𝑐1 mod 𝑞) to demonstrate the truth of the other claim.  An observer can see that one 

of the two claims must be true but cannot tell which. 

Details for proofs of ballot correctness 

The full protocol proceeds as follows – fully divided into the two cases. 



To encrypt an “unselected” option on a ballot, a random nonce 𝑟 is selected uniformly from the 

range 0 ≤ 𝑅 < 𝑞 and an encryption of zero is formed as (𝛼, 𝛽) = (𝑔𝑅 mod 𝑝, 𝐾𝑅 mod 𝑝). 

NIZK Proof that (𝛼, 𝛽) is an encryption of zero or one (given knowledge of encryption nonce 𝑅 

for which (𝛼, 𝛽) is an encryption of zero) 

To create the proof that (𝛼, 𝛽) is an encryption of a zero or a one, randomly select 𝑐1, 𝑣1, and 

𝑢0 and form the commitments  

(𝑎0, 𝑏0) = (𝑔𝑢0 mod 𝑝, 𝐾𝑢0  mod 𝑝) 

and  

(𝑎1, 𝑏1) = (
𝑔𝑣1

𝛼𝑐1
 mod 𝑝,

𝐾𝑣1𝑔𝑐1

𝛽𝑐1
 mod 𝑝) = (𝑔𝑣1𝛼𝑞−𝑐1 mod 𝑝, 𝐾𝑣1𝑔𝑐1𝛽𝑞−𝑐1 mod 𝑝). 

A challenge value 𝑐 is formed by hashing the extended base hash 𝑄̅ together with (𝛼, 𝛽), 

(𝑎0, 𝑏0), and (𝑎1, 𝑏1) to form a challenge value 𝑐 = 𝐻(𝑄̅, (𝛼, 𝛽), (𝑎0, 𝑏0), (𝑎1, 𝑏1)).  The proof is 

completed by forming 𝑐0 = (𝑐 − 𝑐1) mod 𝑞 and 𝑣0 = (𝑢0 + 𝑐0 ⋅ 𝑅 mod 𝑞) and answering the 

challenge by returning 𝑐0, 𝑐1, 𝑣0, and 𝑣1. 

To encrypt a “selected” option on a ballot, a random nonce 𝑅 is selected uniformly from the 

range 0 ≤ 𝑟 < 𝑞 and an encryption of one is formed as (𝛼, 𝛽) = (𝑔𝑟 mod 𝑝, 𝑔 ⋅ 𝐾𝑟 mod 𝑝). 

NIZK Proof that (𝛼, 𝛽) is an encryption of zero or one (given knowledge of encryption nonce 𝑅 

for which (𝛼, 𝛽) is an encryption of one) 

To create the proof that (𝛼, 𝛽) is an encryption of a zero or a one, randomly select 𝑐0, 𝑣0, and 

𝑢1 and form the commitments  

(𝑎0, 𝑏0) = (
𝑔𝑣0

𝛼𝑐0
 mod 𝑝,

𝐾𝑣0

𝛽𝑐0
 mod 𝑝) = (𝑔𝑣0𝛼𝑞−𝑐0 mod 𝑝, 𝐾𝑣0𝛽𝑞−𝑐0 mod 𝑝) 

and 

(𝑎1, 𝑏1) = (𝑔𝑢1  mod 𝑝, 𝐾𝑢1 mod 𝑝). 

A challenge value 𝑐 is formed by hashing the extended base hash 𝑄̅ together with (𝛼, 𝛽), 

(𝑎0, 𝑏0), and (𝑎1, 𝑏1) to form a challenge value 𝑐 = 𝐻(𝑄̅, (𝛼, 𝛽), (𝑎0, 𝑏0), (𝑎1, 𝑏1)).  The proof is 

completed by forming 𝑐1 = (𝑐 − 𝑐0) mod 𝑞 and 𝑣1 = (𝑢1 + 𝑐1 ⋅ 𝑅 mod 𝑞) and answering the 

challenge by returning 𝑐0, 𝑐1, 𝑣0, and 𝑣1. 

In either of the two above cases, what is published in the election record is the encryption 

(𝛼, 𝛽) together with the commitments (𝑎0, 𝑏0) and (𝑎1, 𝑏1) which are all hashed together with 

the election’s extended base hash to form the challenge value 𝑐 which is published together 

with values 𝑐0, 𝑐1, 𝑣0, and 𝑣1. 

An election verifier must confirm the following for each possible selection on a ballot: 



• The given values 𝛼, 𝛽, 𝑎0, 𝑏0, 𝑎1, and 𝑏1 are all in the set ℤ𝑝
𝑟 .  (A value 𝑥 is in ℤ𝑝

𝑟  if and only if 

𝑥 is an integer such that 0 ≤ 𝑥 < 𝑝 and 𝑥𝑞  mod 𝑝 = 1 is satisfied.) 

• The challenge 𝑐 is correctly computed as 𝑐 = 𝐻(𝑄̅, (𝛼, 𝛽), (𝑎0, 𝑏0), (𝑎1, 𝑏1)). 

• The given values 𝑐0, 𝑐1, 𝑣0, and 𝑣1 are each in the set ℤ𝑞.  (A value 𝑥 is in ℤ𝑞 if and only if 𝑥 

is an integer such that 0 ≤ 𝑥 < 𝑞.) 

• The equation 𝑐 = 𝑐0 + 𝑐1 mod 𝑞 is satisfied. 

• The equations 𝑔𝑣0 = 𝑎0𝛼𝑐0 mod 𝑝, 𝑔𝑣1 = 𝑎1𝛼𝑐1  mod 𝑝, 𝐾𝑣0 = 𝑏0𝛽𝑐0 mod 𝑝, and 𝑔𝑐1𝐾𝑣1 =

𝑏1𝛽𝑐1 mod 𝑝 are all satisfied. 

Proof of satisfying the selection limit 

The final step in proving that a ballot is well-formed is demonstrating that the selection limits 

for each contest have not been exceeded.  This is accomplished by homomorphically combining 

all of the (𝛼𝑖, 𝛽𝑖) values for a contest by forming the aggregate contest encryption (𝛼, 𝛽) =

(∏ 𝛼𝑖 mod 𝑝𝑖 , ∏ 𝛽𝑖 mod 𝑝𝑖 ) and proving that (𝛼, 𝛽) is an encryption of the total number of 

votes allowed for that contest (usually one).  The simplest way to complete this proof is to 

combine all of the random nonces 𝑅𝑖 that were used to form each (𝛼𝑖, 𝛽𝑖) =

(𝑔𝑅𝑖  mod 𝑝, 𝐾𝑅𝑖  mod 𝑝) or (𝛼𝑖, 𝛽𝑖) = (𝑔𝑅𝑖  mod 𝑝, 𝑔 ⋅ 𝐾𝑅𝑖  mod 𝑝) – depending on whether the 

value encrypted is zero or one.  The aggregate nonce 𝑅 = ∑ 𝑅𝑖 mod 𝑞𝑖  matches the aggregate 

contest encryption as (𝛼, 𝛽) = (∏ 𝛼𝑖 mod 𝑝𝑖 , ∏ 𝛽𝑖 mod 𝑝𝑖 ) = (𝑔𝑅 mod 𝑝, 𝑔𝐿𝐾𝑅 mod 𝑝) – 

where 𝐿 is the selection limit for the contest.  (Recall that 𝐿 extra “dummy” positions will be 

added to each contest and set to one as necessary to ensure that exactly 𝐿 selections are made 

for the contest.) 

NIZK Proof that (𝛼, 𝛽) is an encryption of 𝐿 (given knowledge of aggregate encryption nonce 𝑅) 

An additional Chaum-Pedersen proof of (𝛼, 𝛽) being an encryption of 𝐿 is performed by 

selecting a random 𝑈 in the range 0 ≤ 𝑈 < 𝑞, publishing (𝑎, 𝑏) = (𝑔𝑈 mod 𝑝, 𝐾𝑈 mod 𝑝), 

hashing these values together with election’s extended base hash 𝑄̅ to form a pseudo-random 

challenge 𝐶 = 𝐻(𝑄̅, (𝛼, 𝛽), (𝑎, 𝑏)), and responding by publishing 𝑉 = (𝑈 + 𝐶𝑅) mod 𝑞.14 

Note that all of the above proofs can be performed directly by the entity performing the public 

key encryption of a ballot without access to the decryption key(s).  All that is required is the 

nonces 𝑅𝑖 used for the individual selection encryptions.  This is sufficient to compute the 

effective aggregate nonce as 𝑅 = ∑ 𝑅𝑖 mod 𝑞𝑖 . 

An election verifier must confirm the following for each contest on the ballot: 

• The number of dummy positions matches the contest’s selection limit 𝐿. 

• The contest total (𝐴, 𝐵) satisfies 𝐴 = ∏ 𝛼𝑖𝑖 mod 𝑝 and 𝐵 = ∏ 𝛽𝑖𝑖 mod 𝑝 where the (𝛼𝑖, 𝛽𝑖) 

represent all possible selections (including dummy selections) for the contest. 

 
14 One could simply release the aggregate nonce 𝑅 = ∑ 𝑅𝑖  mod (𝑝 − 1)𝑖  to complete this proof.  However, since 
Chaum-Pedersen proofs are being performed elsewhere, it is simpler for a verifier to just repeat the same steps. 



• The given value 𝑉 is in ℤ𝑞. 

• The given values 𝑎 and 𝑏 are each in ℤ𝑝
𝑟 . 

• The challenge value 𝐶 is correctly computed as 𝐶 = 𝐻(𝑄̅, (𝐴, 𝐵), (𝑎, 𝑏)). 

• The equations 𝑔𝑉 = 𝑎𝐴𝐶  mod 𝑝 and 𝑔𝐿𝐾𝑣 = 𝑏𝐵𝐶  mod 𝑝 are satisfied. 

Tracking codes 

Upon completion of the encryption of each ballot, a tracking code is prepared for each voter.  

The code is a running hash that begins with the extended base hash code 𝑄̅ and includes an 

identifier for the voting device, the location of the voting device, the date and time that the 

ballot was encrypted, and, of course, the encryption of the ballot itself.  The hash (𝐻) used for 

this purpose is SHA-256.  The tracking code is formed as follows.  𝐻0 = 𝐻(𝑄̅) where  𝑄̅ is the 

extended base hash code of the election.  For ballot with index 𝑖 > 0, 𝐻𝑖 = 𝐻(𝐻𝑖−1, 𝐷, 𝑇, 𝐵𝑖) 

where 𝐷 consists of the voting device information described above, 𝑇 is the date and time of 

ballot encryption, and 𝐵𝑖 is an ordered list of the individual encryptions on the ballot – with the 

ordering as specified by the ballot coding file.  At the conclusion of a voting period (this may be 

the end of a day in a multi-day election), the hash chain is closed by computing  𝐻̅ =

𝐻(𝐻ℓ, "CLOSE"), where 𝐻ℓ is the final tracking code produced by that device during that voting 

period.  The close of the hash chain can be computed either by the voting device or 

subsequently by election administrators, and it is published as part of the election record. 

An election verifier must confirm that each of the values in the running hash is correctly 

computed.  Specifically, an election verifier must confirm each of the following. 

• The equation 𝐻0 = 𝐻(𝑄̅) is satisfied. 

• For each ballot 𝐵𝑖, 𝐻𝑖 = 𝐻(𝐻𝑖−1, 𝐷, 𝑇, 𝐵𝑖) is satisfied. 

• The closing hash 𝐻̅ = 𝐻(𝐻ℓ, "CLOSE") is correctly computed from the final tracking code 𝐻ℓ. 

Once in possession of a tracking code (and never before), a voter is afforded an option to either 

cast the associated ballot or spoil it and restart the ballot preparation process.  The precise 

mechanism for voters to make these selections may vary depending upon the instantiation, but 

this choice would ordinarily be made immediately after a voter is presented with the tracking 

code, and the status of the ballot would be undetermined until the decision is made.  It is 

possible, for instance, for a voter to make the decision directly on the voting device, or a voter 

may instead be afforded an option to deposit the ballot in a receptacle or to take it to a poll 

worker to be spoiled. 

Verifiable Decryption 
At the conclusion of voting, all of the ballot encryptions are published in the election record 

together with the proofs that the ballots are well-formed.  Additionally, all of the encryptions of 

each option are homomorphically combined to form an encryption of the total number of times 

that option was selected.  The encryptions (𝛼𝑖, 𝛽𝑖) of each individual option are combined by 

forming the product (𝐴, 𝐵) = (∏ 𝛼𝑖 mod 𝑝𝑖 , ∏ 𝛽𝑖 mod 𝑝𝑖 ).  This aggregate encryption (𝐴, 𝐵), 



which represents an encryption of the tally of that option, is published in the election record for 

each option. 

To decrypt an aggregate encryption (𝐴, 𝐵), each available election trustee 𝑇𝑖 computes its 

share of the decryption as 

𝑀𝑖 = 𝐴𝑠𝑖  mod 𝑝. 

Each trustee 𝑇𝑖 also publishes a Chaum-Pedersen proof of the correctness of 𝑀𝑖  as follows. 

NIZK Proof by Trustee 𝑇𝑖 of knowledge of 𝑠𝑖 ∈ ℤ𝑝
𝑟  for which both 𝑀𝑖 = 𝐴𝑠𝑖  mod 𝑝 and 𝐾𝑖 =

𝑔𝑠𝑖  mod 𝑝  

Trustee 𝑇𝑖 selects a random value 𝑢𝑖  in the range 0 ≤ 𝑢𝑖 < 𝑞 and commits to the pair (𝑎𝑖, 𝑏𝑖) =

(𝑔𝑢𝑖  mod 𝑝, 𝐴𝑢𝑖  mod 𝑝).  The values (𝐴, 𝐵), (𝑎𝑖, 𝑏𝑖), and 𝑀𝑖  are hashed together with the 

extended base hash value 𝑄̅ to form a challenge value 𝑐𝑖 = 𝐻(𝑄̅, (𝐴, 𝐵), (𝑎𝑖, 𝑏𝑖), 𝑀𝑖), and 

trustee 𝑇𝑖 responds with 𝑣𝑖 = (𝑢𝑖 + 𝑐𝑖𝑠𝑖) mod 𝑞. 

An election verifier must confirm for each (non-dummy) option in each contest in the ballot 

coding file that the aggregate encryption (𝐴, 𝐵) satisfies 𝐴 = ∏ 𝛼𝑗𝑗  and 𝐵 = ∏ 𝛽𝑗𝑗  where the 

(𝛼𝑗 , 𝛽𝑗) are the corresponding encryptions on all cast ballots in the election record. 

An election verifier must then confirm for each (non-dummy) option in each contest in the 

ballot coding file the following for each decrypting trustee 𝑇𝑖. 

• The given value 𝑣𝑖  is in the set ℤ𝑞. 

• The given values 𝑎𝑖 and 𝑏𝑖 are both in the set ℤ𝑞
𝑟 . 

• The challenge value 𝑐𝑖 satisfies 𝑐𝑖 = 𝐻(𝑄̅, (𝐴, 𝐵), (𝑎𝑖, 𝑏𝑖), 𝑀𝑖). 

• The equations 𝑔𝑣𝑖 = 𝑎𝑖𝐾𝑖
𝑐𝑖  mod 𝑝 and 𝐴𝑣𝑖 = 𝑏𝑖𝑀𝑖

𝑐𝑖  mod 𝑝 are satisfied. 

Decryption when all trustees are present 

If all trustees are present and have posted suitable proofs, the next step is to publish the value 

𝑀 = 𝐵 (∏ 𝑀𝑖

𝑛

𝑖=1

)⁄  mod 𝑝. 

This 𝑀 has the property that 𝑀 = 𝑔𝑡 mod 𝑝 where 𝑡 is the tally of the associated option. 

In general, computation of this tally value 𝑡 is computationally intractable.  However, in this 

application, 𝑡 is relatively small – bounded by the number of votes cast.  Election administrators 

can determine this tally value 𝑡 from 𝑀 by exhaustive search, by precomputing a table of all 

possible 𝑀 values in the allowable range and then performing a single look-up, or by a 

combination in which some exponentiations are precomputed and a small search is used to find 

the value of 𝑡 (e.g., a partial table consisting of 𝑔100 mod 𝑝, 𝑔200 mod 𝑝, 𝑔300 mod 𝑝, … is 

precomputed and the value 𝑀 is repeatedly divided by 𝑔 until a value is found that is in the 



partial table).  The value 𝑡 is published in the election record, and verifiers should check both 

that 𝑀 = 𝑔𝑡 mod 𝑝 and that 𝐵 =  (𝑀 ⋅ ∏ 𝑀𝑖
𝑛
𝑖=1 ) mod 𝑝. 

Decryption with missing trustees 

If one or more of the election trustees are not available for decryption, any 𝑘 available trustees 

can use the information they have to reconstruct the partial decryptions for missing trustees as 

follows. 

If trustee 𝑇𝑖 is missing during decryption, each of at least 𝑘 available trustees 𝑇ℓ should use its 

share 𝑃𝑖(ℓ) of the secret value 𝑠𝑖 previously shared by 𝑇𝑖 to compute a share of the missing 

partial decryption 𝑀𝑖  in the same way that it used its own secret 𝑠ℓ.  Specifically, trustee 𝑇ℓ 

publishes partial decryption share 

𝑀𝑖,ℓ = 𝐴𝑃𝑖(ℓ) mod 𝑝. 

Trustee 𝑇ℓ also publishes a Chaum-Pedersen proof of the correctness of 𝑀𝑖,ℓ as follows. 

NIZK Proof by Trustee 𝑇ℓ of knowledge of 𝑠𝑖,ℓ ∈ ℤ𝑝
𝑟  for which both 𝑀𝑖,ℓ = 𝐴𝑠𝑖,ℓ  mod 𝑝 and 

𝑔𝑠𝑖  mod 𝑝 = ∏ 𝐾𝑖,𝑗
ℓ𝑗𝑘−1

𝑗=0  mod 𝑝  

Trustee 𝑇ℓ selects a random value 𝑢𝑖,ℓ in the range 0 ≤ 𝑢𝑖,ℓ < 𝑞 and commits to the pair 

(𝑎𝑖,ℓ, 𝑏𝑖,ℓ) = (𝑔𝑢𝑖,ℓ  mod 𝑝, 𝐴𝑢𝑖,ℓ  mod 𝑝).  The values (𝐴, 𝐵), (𝑎𝑖,ℓ, 𝑏𝑖,ℓ), and 𝑀𝑖,ℓ are hashed 

together with the extended base hash value 𝑄̅ to form a challenge value 𝑐𝑖,ℓ =

𝐻(𝑄̅, (𝐴, 𝐵), (𝑎𝑖,ℓ, 𝑏𝑖,ℓ), 𝑀𝑖,ℓ), and trustee 𝑇ℓ responds with 𝑣𝑖,ℓ = (𝑢𝑖,ℓ + 𝑐𝑖,ℓ𝑃𝑖(ℓ)) mod 𝑞. 

It is important to note here that although the value 𝑃𝑖(ℓ) is known to both the missing trustee 

𝑇𝑖 and the trustee 𝑇ℓ, it is not published or generally known.  However, the value 𝑔𝑃𝑖(ℓ) mod 𝑝 

can be computed from public values as 

𝑔𝑃𝑖(ℓ) mod 𝑝 = ∏ 𝐾𝑖,𝑗
ℓ𝑗

𝑘−1

𝑗=0

 mod 𝑝. 

An election verifier must confirm for each (non-dummy) option in each contest in the ballot 

coding file the following for each missing trustee 𝑇𝑖 and for each surrogate trustee 𝑇ℓ. 

• The given value 𝑣𝑖,ℓ is in the set ℤ𝑞. 

• The given values 𝑎𝑖,ℓ and 𝑏𝑖,ℓ are both in the set ℤ𝑞
𝑟 . 

• The challenge value 𝑐𝑖,ℓ satisfies 𝑐𝑖,ℓ = 𝐻(𝑄̅, (𝐴, 𝐵), (𝑎𝑖,ℓ, 𝑏𝑖,ℓ), 𝑀𝑖,ℓ). 

• The equations 𝑔𝑣𝑖,ℓ = 𝑎𝑖,ℓ ⋅ (𝑔𝑃𝑖(ℓ))
𝑐𝑖,ℓ

 mod 𝑝 and 𝐴𝑣𝑖,ℓ = 𝑏𝑖,ℓ𝑀𝑖,ℓ
𝑐𝑖,ℓ  mod 𝑝 are satisfied. 

 

The final step to reconstruct a missing partial decryption 𝑀𝑖  is to compute Lagrange coefficients 

for a set of 𝑘 available trustees {𝑇ℓ: ℓ ∈ 𝑈} with |𝑈| = 𝑘 as 



𝑤ℓ =
(∏ 𝑗𝑗∈(𝑈−{ℓ}) )

(∏ (𝑗 − ℓ)𝑗∈(𝑈−{ℓ}) )
mod 𝑞. 

An election verifier should confirm that for each trustee 𝑇ℓ serving to help compute a missing 

share of a tally, that its Lagrange coefficient 𝑤ℓ is correctly computed by confirming the 

equation (∏ 𝑗𝑗∈(𝑈−{ℓ}) ) mod 𝑞 = 𝑤ℓ ⋅ (∏ (𝑗 − ℓ)𝑗∈(𝑈−{ℓ}) ) mod 𝑞. 

An election verifier should then confirm the correct missing tally share for each (non-dummy) 

option in each contest in the ballot coding file for each missing trustee 𝑇𝑖 as 𝑀𝑖 =

∏ (𝑀𝑖,ℓ)
𝑤ℓ

ℓ∈𝑈 mod 𝑝. 

Note that the missing secret 𝑠𝑖 could be computed directly as 𝑠𝑖 = ∑ 𝑤ℓ𝑃𝑖(ℓ) mod 𝑞ℓ∈𝑈 .  

However, it is preferable to not release the missing secret and instead only release the partial 

decryption that the missing secret would have produced.  This prevents the missing secret 𝑠𝑖 

from being used for additional decryptions without the cooperation of at least 𝑘 trustees. 

As an example, consider an election with five trustees and a threshold of three.  If two trustees 

are missing at the time of decryption, the remaining three can perform any required 

decryptions by constructing missing partial descriptions as described in the text above.  If, 

instead, they take the shortcut of simply reconstructing and then using the two missing secrets, 

then any of the three could, at a later time, use its own secret together with the two 

reconstructed secrets to perform additional decryptions without cooperation of any other 

trustees. 

The final step is to verify the tallies themselves. 

An election verifier should confirm the following equations for each (non-dummy) option in 

each contest in the ballot coding file. 

• 𝐵 = 𝑀 ⋅ (∏ 𝑀𝑖
𝑛
𝑖=1 ) mod 𝑝. 

• 𝑀 = 𝑔𝑡 mod 𝑝. 

An election verifier should also confirm that the text labels listed in the election record match 

the corresponding text labels in the ballot coding file. 

Decryption of spoiled ballots 

Every ballot spoiled in an election is individually verifiably decrypted in exactly the same way 

that the aggregate ballot of tallies is decrypted.  Election verifiers should confirm all such 

decryptions so that casual observers can simply view the decryptions and confirm that they 

match their expectations. 

An election verifier should confirm the correct decryption of each spoiled ballot using the same 

process that was used to confirm the election tallies. 



An election verifier should also confirm that for each decrypted spoiled ballot, the selections 

listed in text match the corresponding text in the ballot coding file. 

The Election Record 
The record of an election should be a full accounting of all of the election artifacts.  Specifically, 

it should contain the following. 

• Date and location of an election 

• The ballot coding file 

• The baseline parameters 

o Primes 𝑝 and 𝑞 and integer 𝑟 such that 𝑝 = 𝑞𝑟 + 1 and 𝑟 is not a multiple of 𝑞 

o A generator 𝑔 of the order 𝑞 multiplicative subgroup ℤ𝑝
∗  

o The multiplicative inverse 𝑔̅ of 𝑔 modulo 𝑝 

o The number 𝑛 of election trustees 

o The threshold 𝑘 of trustees required to complete verification 

• The base hash value 𝑄 computed from the above 

• The commitments from each election trustee to each of their polynomial coefficients 

• The proofs from each trustee of possession of each of the associated coefficients 

• The election public key 

• The extended base hash value 𝑄̅ computed from the above 

• Every encrypted ballot prepared in the election (whether cast or spoiled) 

o All of the encrypted options on each ballot (including “dummy” options) 

o The proofs that each such value is an encryption of either zero or one 

o The selection limit for each contest 

o The proof that the number of selections made matches the selection limit 

o The device information for the device that encrypted the ballot 

o The date and time of the ballot encryption 

o The tracker code produced for the ballot 

• The decryption of each spoiled ballot 

o The selections made on the ballot 

o The cleartext representation of the selections 

o Partial decryptions by each trustee of each option 

o Proofs of each partial decryption 

o Shares of each missing partial decryption (if any) 

o Proofs of shares of each missing partial decryption 

o Lagrange coefficients used for replacement of any missing partial decryptions 

• Tallies of each option in an election 

o The encrypted tally of each option 

o Full decryptions of each encrypted tally 

o Cleartext representations of each tally 



o Partial decryptions by each trustee of each tally 

o Proofs of partial decryption of each tally 

o Shares of each missing partial decryption (if any) 

o Proofs of shares of each missing partial decryption 

o Lagrange coefficients used for replacement of any missing partial decryptions 

• Ordered lists of the ballots encrypted by each device 

An election record should be digitally signed by election administrators together with the date 

of the signature.  The entire election record and its digital signature should be published and 

made available for full download by any interested individuals.  Tools should also be provided 

for easy look up of tracker codes by voters. 

Applications to end-to-end verifiability and risk-limiting audits 
The methods described in this specification can be used to enable either end-to-end (E2E) 

verifiability or enhanced risk-limiting audits (RLAs).  In both cases, the ballots are individually 

encrypted and proofs are provided to allow observers to verify that the set of encrypted ballots 

is consistent with the announced tallies in an election. 

In the case of E2E-verifiability, voters are given tracking codes to enable them to confirm that 

their individual ballots are correctly recorded amongst the set of encrypted ballots.  In the case 

of RLAs, encrypted ballots are randomly selected and compared against physical ballots to 

obtain confidence that the physical records match the electronic records. 

To support enhanced risk-limiting audits (RLAs), it may be desirable to encrypt the master 

nonce of each ballot with a simple administrative key rather than the heavyweight election 

encryption key.  This streamlines the process for decrypting an encrypted ballot that has been 

selected for audit.  It should be noted that the privacy risks of revealing decrypted ballots are 

substantially reduced in the RLA case since voters are not given tracking codes that could be 

used to associate them with individual ballots.  The primary risk is a coercion threat (e.g., via 

pattern voting) that only manifests if the full set of ballots were to be decrypted. 

While the administratively encrypted nonce can be stored in an electronic record alongside 

each encrypted ballot, one appealing RLA instantiation is for the administrative encryption of a 

ballot’s nonce to be printed directly onto the physical ballot.  This allows an RLA to proceed by 

randomly selecting an encrypted ballot, fetching the associated physical ballot, extracting the 

nonce from its encryption on the physical ballot, using the nonce to decrypt the electronic 

record, and then comparing the physical ballot contents with those of the electronic record.  A 

malicious actor with an administrative decryption key would need to go to each individual 

physical ballot to obtain the nonces necessary to decrypt all of the encrypted ballots, and the 

access to do so would enable this malicious actor to obtain all of the open ballots without 

necessitating the administrative decryption key. 



If E2E-verifiability and enhanced RLAs are both provided in the same election, there must be 

separate ballot encryptions (ideally, but not necessary, using separate election encryption keys) 

of each ballot.  The E2E-verifiable data set must be distinguished from the enhanced RLA data 

set.  Using the same data set for both applications would compromise voter privacy for voters 

whose ballots are selected for auditing. 
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